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1 The Plethystic Logarithm

To finish up our discussion on the theory of plethystic substitution for now, we need to
briefly discuss the Möbius function.

1.1 The Möbius function

Definition 1.1. The Möbius funcction µ(k) is defined recursively by∑
k|n

µ(k) =

{
1 n = 1

0 n 6= 1.

Example 1.1. Let’s compute some values of µ:

n 1 2 3 4 5 6 7 8 9 · · ·
µ(n) 1 −1 −1 0 −1 1 −1 0 0 · · ·

Proposition 1.1.

µ(n) =

{
(−1)number of prime factors of n n is square-free

0 otherwise

We will not prove this, but you can do the proof yourself for fun. [footnote about
mobius inversion]

1.2 The plethystic logarithm

Last time we said that we can find the cycle index for connected graphs by manipulating
the fact that a graph is a union of connected graphs:

ZG = ZE︸︷︷︸
Ω

∗ZGc .

In other words, we want to solve the equation

B = Ω ∗A.
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Proposition 1.2. If we have the equation B = Ω[A],

A =
∞∑
k=1

µ(k)

k
log pk[Ω[A]]

Proof. Note that

Ω[A] = exp
∞∑
`=1

1

`
p`[A],

pk[Ω[A]] = exp
∞∑
`=1

1

`
pk`[A].

So the right hand side is

∞∑
k=1

µ(k)

k

∞∑
`=1

1

`
pk`[A] =

∞∑
k`=1

µ(k)

k`
pk`[A]

=
∞∑
n=1

∑
k|n

µ(k)
pn[A]

n

= p1[A]

= A.

If we call the right hand side Λ, then what this says is that

B = Ω[A] =⇒ A = Λ[B].

2 Coxeter groups

2.1 Definition and examples

These are also called finite real reflection groups.

Definition 2.1. Given a nonzero v ∈ Rn, define the hyperplane Hv = {w : (w, v) = 0}. A
reflection sH across H is a transformation such that

sH(w) =

{
w w ∈ Hv

−v w = v.

Definition 2.2. A Coxeter group G is a subgroup of On(R) that is generated by reflections.

Coexeter groups come with a faithful representation G � Rn.
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Example 2.1. Sn is a Coxeter group. It acts on Rn by permuting the basis vectors. So
for the transposition (i j) ∈ Sn and basis {e1, . . . , en} ⊆ Rn, we have

ek 7→ ek if k 6= i, j

ei + ej 7→ ei + ej ,

ei − ej 7→ −(ei − ej).

The corresponding vector and orthogonal hyperplane are

v = ei − ej

H = {(x1, . . . , xn) ∈ Rn : xi = xj} .

The vector (1, 1, . . . , 1) is invariant, so

H = R · (1, 1, . . . , 1)⊥ = {(x1, . . . , xn) : x1 + · · ·+ xn = 0} ∼= Rn−1.

In fact, (i j) is still a reflection on this hyperplane.

Example 2.2. Let S3 � R3 with basis vectors v1, v2, v3. We can draw 3 perpendicular
planes. If you draw a triangle on these (with vertices at the tip of a unit vector on each
plane), you can see that S3, which permutes the planes, is the set of symmetries of the
triangle; i.e. S3

∼= D6.

Example 2.3. The dihedral groups D2k are Coexeter groups. They are generated by k
reflections, and the also have k rotations (which are each the product of 2 reflections).

If G � Rm nad H � Rn, then G×H � Rm ⊕ Rn. So the product of Coxeter groups is
a Coxeter group.

Example 2.4. The signed permutations Bn � Rn are a permutation group. They are
generated by Sn and matrices of the form

1
. . .

1
−1

1
. . .

1


.

In fact, Bn
∼= Sn n (Z/2Z)n. This is non-degenerate; no vector is fixed under this action.
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